1. Identify the key characteristics of the following functions:
 a. \(f(x) = e^x \)

 H.A. \(y = 0 \)
 D: \((\infty, \infty)\)
 y-int: \((0, 1)\)
 R: \((0, \infty)\)
 b. \(f(x) = \ln x \)

 V.A. \(x = 0 \)
 D: \((0, \infty)\)
 x-int \((1, 0)\)
 R: \((\infty, 0)\)

2. Tell whether the functions represent exponential growth or decay.
 a. \(f(x) = 2.5 \left(\frac{7}{8} \right)^x \)
 Decay
 \(0 < b < 1 \)
 b. \(f(x) = e^{-x} \)
 Decay

3. Simplify the following expressions:
 a. \((5e^{-2x})^3 = 5^3 e^{-6x} = \frac{125}{e^{6x}} \)
 b. \(\sqrt[4]{16e^{12x}} = \sqrt[4]{2^4 (e^{3x})^4} = 2e^{3x} \)

4. Evaluate each log expression. NON-Calculator
 a. \(\log_{10} \frac{1}{10,000} = -4 \)
 b. \(\log_2 \sqrt[4]{32} = \log_2 (2^5) \frac{1}{4} \)
 \(= \log_2 2^{5/4} \)
 \(= \frac{5}{4} \)
 \(2^x = 2^{5/4} \)
 \(x = \frac{5}{4} \)
 c. \(\ln e^{16} = 16 \)
 d. \(\log_7 49 = 2 \)
 e. \(\log_9 1 = 0 \)
 f. \(\log_3 81^{\frac{1}{2}} = \log_3 (3^4) \frac{1}{4} \)
 \(= \log_3 3^{4 \cdot \frac{1}{4}} \)
 \(= \log_3 3^1 \)
 \(= 1 \)
 \(x = \frac{1}{4} \)
 g. \(e^{\ln 7} = 7 \)
 h. \(\log_5 25 + \log_{5^{0.7}} 7 \)
 \(= 2 + 7 \)
 \(= 9 \)
12. Bob invested $5000 at 6%. How much money will he have after 5 years if the interest is compounded...
 a. quarterly \(n = 4 \)
 \[
 A(t) = 5000 \left(1 + \frac{0.06}{4}\right)^{4 \times 5}
 \]
 \$ 6734.28
 b. continuously \(A(t) = Pe^{rt} \)
 \[
 A(t) = 5000 e^{(0.06 \times 5)}
 \]
 \$ 6749.29

13. Radioactive decay: Let \(Q(t) \) represent the mass in grams of a quantity of radium 226 whose half-life is 1620. If 25 grams are present initially, how much will be present after 1000 years?

 \[
 Q(t) = 25 \left(\frac{1}{2}\right)^{\frac{t}{1620}} \\
 Q(1000) = 25 \left(\frac{1}{2}\right)^{\frac{1000}{1620}} \\
 \approx 16.2974
 \]

 There will be approximately 16.3 grams of radium 226 after 1000 years.

14. Depreciation: After \(t \) years, the value of a car (in dollars) is given by \(V(t) = 20000 \left(\frac{3}{4}\right)^t \).
 a. What is the current value of the car? \$ 20,000
 b. What is the percent increase or decrease? 25% decrease in value
 c. What will the value of the car be after 2 years? \(V(2) = 11,250 \) \$11,250
 d. When will the value of the car be $8000? (to the nearest tenth of a year) Justify graphically.

15. Population growth: The population of a town increases according to the model \(P(t) = 2500e^{0.0293t} \) where \(t \) is the time in years since 1990. Use the model to estimate the population in...
 a. 2000 \(t = 10 \)
 \[
 P(10) \approx 3351.11
 \]
 2000 Pop is approx 3351 people
 b. 2010 \(t = 20 \)
 \[
 P(20) \approx 4491.967
 \]
 2010 Pop is approx 4492 people
5. Convert to exponential form: \(\log_{27} 243 = \frac{5}{3} \)

\[27^{\frac{5}{3}} = 243 \]

6. Convert to logarithmic form: \(\left(\frac{4}{9}\right)^{\frac{3}{2}} = \frac{3}{2} \)

\[\log_{\frac{4}{9}} \frac{3}{2} = \frac{1}{2} \]

7. State the domain of the function: \(f(x) = 3 \log(2 - 5x) \)
NON-Calculator

\[2 - 5x > 0 \]

\[D = (\infty, \frac{2}{5}) \]

\[-5x > -2 \]

\[x < \frac{2}{5} \]

8. Solve each equation. NON-Calculator

 a. \(\log_3(4x - 3) = 2 \)

 \[3^2 = 4x - 3 \]

 \[9 = 4x - 3 \]

 \[12 = 4x \]

 \[3 = x \]

 b. \(\log_x 27 = \frac{3}{4} \)

 \[x^{\frac{3}{4}} = 27 \]

 \[(x^{\frac{3}{4}})^{\frac{4}{3}} = (3^3)^{\frac{4}{3}} \]

 \[x = 3^2 = 9 \]

9. Given \(A(t) = 2300(3)^{\frac{t}{4}} \) for \(A(t) \) in pounds, and \(t \) days. NON-Calculator

 a. What is the original amount? \(2300 \) pounds

 \[\frac{23}{\frac{9}{180}} = 23 \]

 b. How long does it take the amount to triple? \(4 \) days

 \[\frac{127}{207} = \frac{127}{207} \]

 c. How much is present after 8 days? \(A(8) = 2300(3)^{\frac{8}{4}} \)

 \[207,000 \text{ pounds} \]

 is present after 8 days.

 \[A(8) = 2300 \cdot 3^2 = (2300)(9) = 20700 \]

10. Start with $1200. Write a function for the amount at time \(t \) if it quadruples every 20 years.

\[A(t) = 1200(4)^{\frac{t}{20}} \]

<table>
<thead>
<tr>
<th>(t)</th>
<th>(A(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1200</td>
</tr>
<tr>
<td>20</td>
<td>4800</td>
</tr>
</tbody>
</table>

11. Use TI to evaluate each expression (round to 4 decimal places):

 a. \(\log(1+\sqrt{2}) \approx 0.3828 \)

 b. \(\frac{15 \ln 23}{(\ln 7 - \ln 2)} \approx 37.5429 \)